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1. Introduction

The important fact of the representability of L'-Brownian functionals as an Ito

stochastic integral may be proved by using the homogeneous chaos decomposition of the

L 2-space of Brownian motion and showing as main step, that the multiple Wiener
integral can be written as an iterated Ito stochastic integral (f. G3. Kallianpur [41).For the proof of this latter fact, usually it is referred to Ito's way (cf. (2]) to showing the

representation

I, (n =: n! dW t .. n- d V Wt o(tl I.. tnl)
n 0 10 2 0 n,' n

(where I denotes the n-fold multiple Wiener integral, (Wt)tfol, Brownian motion,
_ :0 R a special elementary function of the form

f . Al.. 'A a partition of (0,1J
a. a. A x~A ' p= n n

into Borel measurable subsets, aiI...,in = 0 if two of the indices it,...,in are equal, and fa
the symmetrization of f)
and to extending this formula by the usual technique of approximation and the

properties of multiple Wiener integral and the Ito stochastic integral.

Since it appears intricate to calculate the above iterated Ito stochastic integral for the

Iv symmetrization even of a special elementary function, I apologize the following short

proof, which uses the martingale properties of Brownian motion, a well-known formula

transferring different forms of Hermitian polynomials into each other, and a simple
property of symmetric tensor products.
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2

2. Representation of the multiple Wiener integral as an iterated [to stochastic integral

We will use the following notations:

®"L 2([0.11) the n-fold tensor product of the space

L2((0,1],A), A the Lebesgue measure on (0,1]

g"L 2((0,1]) cl- [in {f1 ®o ... &of,: f, E L2( (0,11), i s n

the corresponding symmetric tensor product, where

I If .. . f . .f (9 ... 0,rn : = ,j n .n .. nI  nn 0

n

n = (nj, ...,nn) a permutation of the integers {1....n}, cl - lin A the too

closed linear span of the set A.

L, 2( (0,1]n) denotes the symmetric L2 _functions on [0,1]n .

The (unnormalized) n-fold multiple Wiener integral In for a special elementary function

f of the form

f=
a.........xA.

I I 1 I In1t..... n=1 t .. ' in

is given by

1 f0 a W(A I...W(A.
n - 1 i n

where '
WV(A : I A dW

0 '

is the stochastic measure corresponding to the Brownian motion (Wt)t[O.1 I

(A, ... ,Ap a partition of (0.11 into Borel measurable subsets, ai,, i. =0 if two of the 1
indices i. are equal).

identifying &on L-( (0,11 ) with L0
2 ( (0,0II ), it is clear that the symmetric tensor O"g

(g E L2(O.1] )corresponds to f(LI&- ((0,1]), f(t.. t) = g(t )g(t)) ... g(t).

% I
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Lemma 1.
2 2

Leth (e)-1) e e(l) (dx)

be the n-th normalized Hermite polynomial and
2 2

H n(tx):

Then
n

Ctl, ) (n'}f hn  '
I(t'x) = '-(n

This formula is well-known.

Lemma 2.

0
n L 2 ( [01]) = l- lin {®ng. g E L2 ( [0,1])}

Proof. It is to show that for every h1®o...®9ohE (eo" L2 ( [0,1] ) there exist
gl, .... g, (L2'( (,1 t, .... , ER, rE Nsuch that

r

1 0 "'" o n 1-9-

We proceed by induction:

i) Let h, (o...Ooh,, be of the form h k Oo h,n-k, where h= k h
Consider h k Oo h-k a tensor of the symmetric tensor algebra S(E) on

the vector space E: = lin (ho hR.a
S(E) is isomorphic to the polynomial algebra R [x!, x.., over R and

nr, h oh~ n corresponds to X kx,,n

The polynomials f X kx,nk : k=0, .n I form a basis for the

A. homogeneous polynomials of degree n in two variables.

Consider e. n - (aix1 + aibx 2 )n =

n

- k 'kb

The determinant of the matrix
n a,, n 'a1 I

is a polynomial in a, 0 i s n I s j s 2). which is not identically zero.

VVIVV %' 1%,V M, %,% % % V% % %
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Thus we may fix suitable a,,, such that this determinant is not zero, i.e.

there exist linearly independent polynomials eon, ... en of degree n,

which span Rn [x, x].

Thus there existh X. x with

k n-k 
n"x 2 = --- ' e,

i=O

The polynomial e n corresponds in S(E) to 0 g,, where

g = (ai 1hl + ai2h2).

ii) Now identify h,® 0 ... ohn with a tensor in S(E) , E = lin {h1, ... h},

and thus with a polynomial x kj . xk 2 ... X kn , where
I I

k.= n
i=1

By induction we assume

k (k 2k k r k n-k
xI x 2 ... x n)= e- i

i=O
The elements of the sum are polynomials of degree n in two variables

(with ei linear, homogeneous in x., ... x ) ; thus they can be represented

as linear combinations of certain f" (with f linear, homogeneous in x1,

,x). To f.n correspond O"g, ( S(E) ,which give the representation of

h 1 ®o ... (go hn we have been looking for.

Lemma 3. Let (0, F. P) be a probability space, (Ft)t2>o a right-continuous

filtration, X) = 0, (Xt)tL.o a continuous semi-martingale.

Then ttdX Id X d X f' < X. X>t. X)

For the proof of this result, see for example (1].

Now [to's result can be proved very easily:

]%
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Proposition (Ito [2]).

wThe multiple Wiener integral can be written as an iterated stochastic integral, i.e. for

SE L2 ( [0,I]):

'nM i = n! Il dW ... V t - dW (tI  ...

-" 1 00- 0 n

where fo is the symmetrization of f.

Proof. By the linearity of stochastic integrals, the inequality

l I '..{ Io°-1 W g(t 1) ... g(t)) g
1J 2 - 0 I)

(g E L2( [0,11 )), and by the fact (cf. [41 and [5]) ,that the n-fold multiple

Wiener integral induces an isometric isomorphism Jn from ®&, L2( [0,1]

onto the n-th homogeneous chaos in L2 (M, Fw, P), such that for

f(tt .... t) = g(td)...g(td, g E L 2 ( [0,1):

InM ~ In) fn(n)=W . 0gdW

it suffices to show the assertion for functions fof the form

Rt-.... t) = g(t1 )...g(t.) for g E L 2 ( [0,1] ,by Lemma 2.

Since L ,=

gL < g(s)dV >. 1)
n S

we have by Lemma 1:

I M = n! H g(s)dW >, J gs)d\ ),
nn 0 0 A.

and Lemma 3 proves the assertion.

I\
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